AI Configuration
Samples
use ChatGPT
ts
new AiEditor({
element: "#aiEditor",
ai: {
models: {
openai: {
apiKey:"sk-alQ96zbDn*****"
} as OpenaiModelConfig
}
},
})
OR other LLMs
typescript
new AiEditor({
element: "#aiEditor",
ai:{
models:{
spark:{
appId:"****",
apiKey:"****",
apiSecret:"****",
version:"v3.5" //support v2.1 v3.1 v3.5 v4.0
}
},
bubblePanelEnable: true,
bubblePanelModel: "auto",
bubblePanelIcon: "<svg .....>",
bubblePanelMenus: [],
onCreateClientUrl: "...."
},
})
- models: Model configuration, supports
openai
,spark
,wenxin
,custom
, for details, please refer to: here - bubblePanelModel: The name of the large language model used by the AI Bubble menu
- bubblePanelIcon: The custom icon of the AI Bubble menu
- bubblePanelMenus: This configuration is referenced here
- onCreateClientUrl: Custom URL signing algorithm. Generally, if the editor involves content open to the public, onCreateURL needs to be configured to sign the URL through the server to generate a communication URL.
- spark: Configuration for the Spark large model. Supported configurations for the Spark large model include:
typescript
protocol?: string,
appId: string,
apiKey?: string,
apiSecret?: string,
version?: string,
- protocol: Communication protocol, supports ws and wss.
- appId: Application ID.
- apiKey: API Key.
- apiSecret: API secret key.
- version: Version, default is v3.1.
Server-side signature
When using AiEditor for internal users, it's acceptable to configure the model's appId
, apiKey
, and apiSecret
on the frontend.
However, for ordinary internet users, appId
, apiKey
, and apiSecret
should not be configured on the frontend. Instead, they should be signed through backend services for Ai request paths. Custom configuration of onCreateClientUrl
is required to ensure key security.
Samples:
typescript
new AiEditor({
element: "#aiEditor",
ai:{
models:{
spark:{
appId: "****",
}
},
onCreateClientUrl: (modelName, modelConfig, startFn)=>{
//After obtaining the signed URL from the backend, execute the startFn function and pass the URL as a parameter.
fetch("/your-path/getUrl?appId="+modelConfig.appId)
.then(resp=>resp.json)
.then(json=> {
startFn(json.url)
})
},
onTokenConsume(_, __, count) {
axios.post("/api/v1/resource/doTokenCounting", {
count
})
}
},
})
Record token consumption
sample:
typescript
new AiEditor({
element: "#aiEditor",
ai: {
models: {
spark: {
appId: "****",
}
},
onTokenConsume(modelName, modelConfig, count) {
//This method will be called when a token is consumed.
axios.post("/api/v1/resource/doTokenCounting", {
count
})
}
},
})